当前位置:365书包网>历史军事>从秦始皇开始的直播探险> 第170章 数学家
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第170章 数学家 (1 / 4)

祖暅之是南北朝时期南朝杰出的数学家和天文学家,他是祖冲之之子。

他的主要成就之一是提出了祖暅原理。祖暅原理的内容是“幂势既同,则积不容异”。意思是等高的两个立体,若在任意高处的水平截面积相等,那么它们的体积相等。凭借这个原理,他成功解决了刘徽没能解决的球体积公式问题。西方在17世纪才由卡瓦列里发现类似的原理,这比祖暅之晚了1000多年。

他还在历法方面有贡献。祖冲之编制的《大明历》,因为戴法兴等人的阻挠,在祖冲之生前没有施行。祖暅之三次上书,最终使得《大明历》在梁武帝天监九年(510年)得以采用。

在天文观测与仪器制造上,他也有所建树。他监造八尺铜表来测量日影长度,并且发现北极星与北天极不动处相差约一度有余。他还对漏壶等计时器进行了改进。

在生平经历方面,他受到家庭的熏陶,自幼钻研数学和天文知识,继承了父亲的研究成果。他修补编辑《缀术》,这本书代表当时数学的最高水平,不过很可惜后来失传了。

他在梁朝担任员外散骑侍郎、太府卿等职。普通六年(525年)在徐州被北魏俘虏,后来又回到南朝。

他把自己的学问传授给信都芳、毛栖成和儿子祖皓,使得他们在数学等领域有所成就,为学术的传承和发展做出了贡献。

他着有《漏刻经》《天文录》等作品。不过《漏刻经》已经失传,《天文录》也仅存残篇。

刘徽介绍:

人物生平:

刘徽约生于公元225年,卒于公元295年,是魏晋时期山东邹平县人,出身平民家庭。

他自幼聪颖,博览群书,对《九章算术》深入钻研,于魏陈留王景元四年(263年)为其作注,并自撰自注《重差》一卷,后被称为《海岛算经》。

刘徽终生未仕,致力于数学研究,后半生曾在河南活动,于西晋初年逝世,北宋大观三年(1109年)被封为淄乡男。

主要思想:

极限思想:受名家和墨家影响,提出极限观念,如“割之又割,以至于不可割,则与圆合体而无所失矣”,并将其用于证明《九章算术》中的面积公式等。

唯物主义思想:在《九章算术·少广》章开立圆术注里,指出张衡计算球体积的错误,体现了实事求是的唯物主义精神。

逻辑推理思维:是中国最早以演绎逻辑论证数学命题的人,主张“析理以辞,解体用图”,把逻辑推理与直观分析结合起来。

思辨思想:重视数学理论研究,反对生搬硬套公式,强调对数学理论的抽象概括和提炼,还对许多重要数学概念给出明确定义。

出入相补思想:将图形的有限可分性概括为出入相补原理,用于证明勾股容圆公式及直线形的面积公式等。

主要成就:

完善数学理论体系:通过注释《九章算术》,阐述各算法的理论依据,揭示内在联系,使其成为严谨、完整的理论体系。

数系理论:发明“求微数法”,创造十进分数逼近无理根,完善了实数系统。

筹式演算理论:建立从比率到“方程”的筹式演算统一理论,实现筹式演算的模式化与程序化。

勾股与测量理论:提出勾股“不失本率原理”,建立相似勾股形理论,奠定勾股测量术的理论基础,还将其与比率算法结合,构成勾股测量方法与原理。

几何学的求积理论:以长方形面积公式为公理,用出入相补原理处理平面直边多边形求积问题,提出“牟合方盖”理论推进球体积计算,用极限方法建立刘徽体积原理,奠定多面体求积理论基础。

数学创作:创建“割圆术”,算出圆周率近似值

上一章 目录 +书签 下一页