当前位置:365书包网>都市言情>巅峰学霸小说> 第111章 论文完成
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第111章 论文完成 (3 / 8)

项工作中去,然后真让他发现了共性的存在。模形式等级越高,曲线越复杂,所以k~曲线复杂性。

质数p控制曲线在p—进数域上的局部几何行为,不同的质数对应不同的几何约束,质数p也与曲线复杂性有关,所以p局部几何复杂性量子化同调中的参数q反映量子化几何对象对曲线全局复杂性的影响,这是对曲线几何复杂性的进一步量化,所以q~全局几何复杂性。换言之,不同的几何参数虽然来源不同,但它们反映的都是曲线在不同视角下的复杂性。

这是什麽?这就是参数统一的界定条件。

于是在周五晚上,乔喻设计出了一个统一的几何约束参数0,并提出了第二个假设:几何约束参数0是模形式等级丶p—进数域质数和量子化同调参数的某种加权组合,它们共同反映曲线的全局复杂性。

基于这个假设,很显然,乔喻能得到一个基本结构:0=f(g,k,p,q)。当然,到了这一步,显然还不够。

因为每个参数的权重并不一样,要让结构在数学上具备合理性,需要一个能够完美体现各个参数权重的组合方式。接下来就是计算跟验证工作,复杂,但不难。

不过一个晚上,乔喻便得出结论,k的增长与亏格g成对数级增长,所以:k~glog(g);局部几何的复杂性随着亏格增加呈指数级变化,所以p~eg/2;量子化同调中,参数q与亏格g的关系增长乔喻则直接算出了一个近似值:q~g3/2。

公式自然而然就出来了:0=f(g,k,p,q)=g-log(k) g2log(p) g·q

把三个参数的表达直接带入后,就是:0=g·log(glog(g) g2log(eg/2) g·g3/2 到了这一步就已经只剩亏格g一个重要参数。

接下来就是最简单的化简工作:0=g·(log(g) log(log(g)) g3/2 g5/2

三天日以继夜在电脑前忙碌之后,乔喻在2025年2月21日,周五晚上11点37分,终于在电脑上敲出了关于曲线有理数点预估的最终公式:n(x)sc(0)=0gθ就是他设计的几何约束参数,g是亏格。

这个公式果然很美!

欣赏了一阵之后,乔喻立刻开始着手验证,毕竟公式光美没用,必须得有用才行。他要做的是根据自己的公式来求其是否准确。

乔喻选了经典椭圆曲线y2=x3 x

根据bsd猜想已知条件可知曲线亏格为1,直接带入公式,然后化简得到的结果就是:0=5,嗯,5的1次方还是5。结论显然正确。

因为这就是经典的艾尔米特曲线,曲线上的有理数点,早在十多年前就已经有人计算过了。

接下来是莫德尔曲线丶费马曲线的特殊情况丶kubert曲线的各种情况都让乔喻试了个遍。

比如莫德尔曲线:y2=x3 k,k为整数。乔喻分别验证了k=—1,k=2等已知有限有理点的情况,结果都是正确的。

接着乔喻又打开了罗伯特·格林教授的论文,用自己的公式跟罗伯特·格伦推导的出的公式进行对比性计算,在确定的点数上,他的公式大都跟罗伯特的结果一样,但一些不确定的,双方推算出来的还有些出入,但不大。

好吧,乔喻也懒得计较谁对谁错了。

起码到了这一步,他已经可以开始写论文了,这一步对他来说反而是最简单的。

因为之前大半个月推导公式的过程他都已经写好了,因为早就考虑过要完成一篇论文,所以整个推导过程乔喻本就准备的很详尽,接下来无非就是用专业的语言把那些推导过程整合在一起。

无非就是引理丶定

上一页 目录 +书签 下一页