之和。
嗬嗬,是不是很巧合?当然了,科学家眼里,没有那么多的巧合。有人听得一头雾水了,那让我们亲眼见识一下大自然共通的美妙,我带来了一盒美丽惊人的鹦鹉螺,大家看一看。”
螺线大家都能想象吧?鹦鹉螺的螺壳就是最完美的生长螺线,这种“美”几乎人人都能赞同。
土豪艺术家:“这种极为完美的螺线叫等角螺线,设l为穿过原点的任意直线,则l与等角螺线的相交的角永远相等。(不止是直线与直线才有交角,直线与曲线一样可以有交角。)这种螺线怎么画出来的呢?看这个,我这里有边长分别为1,3,5,8,13……也就是边长为斐波纳契数列的正方形,我把它以螺旋的方式一个一个地边贴着边放好,奇迹诞生了,这些正方形的内切圆连接起来,成了对角螺线。
鹦鹉螺为什么要长成这个样子呢?是为了好看吗?呵呵,也许是吧,今天我要抛出来引发大家思考的命题就是——美,就是生存,生存就是美。坚硬的外壳是生物的生存策略,等角螺线这样的生长螺线是其中的一个极致。树皮也很坚硬,但不够硬,所以我们看到树皮长大到一定程度就裂开了,然后重新长出适合新树干的皮,乌龟的壳也有裂纹,昆虫、蛇的外壳生长到一定的程度就会蜕皮。
而鹦鹉螺的壳不需要掉落,它们有独一无二的本领——等角螺线式地生长,因为壳曲线与经过原点直线相交的交角是完全一样的,鹦鹉螺的细胞只需要一个参数就可以正确地不断地生长,并尽情地使用最坚硬永远不用蜕去的壳,这对保护它们柔弱的躯体有益。这种方式也是最省材料、最划算的、最省力的。
说到最省力,我有一个更好的美图给大家欣赏——请大家看我带来的风车星系的照片,这是伟**国的天文学家皮埃尔·梅香发现的,他发现了很多螺旋星系,其中风车星系最美最正点。星系是靠引力维系在一起的天体集群,数以亿计的恒星也以对角螺线的方式聚拢在一起,这证明了什么?这是引力中心最‘省力’的牵引庞大天体的方式,在天文尺度证明了这种曲线的合理性。鹦鹉螺壳以这种方式结合在一起,就会达到坚硬、致密的极致。
鹰也知道等角螺线的奥秘,它们接近猎物时的空中盘旋姿态就是等角螺线,这样的姿态最有的效能。
植物知道等角螺线的奥秘,不仅花,还有叶、枝条、果实、种子等等形态特征,都可发现斐波纳契数。叶序是指叶子在茎上的排列方式,最常见的是互生叶序,即在每个节上只生1叶,交互而生。任意取一个叶子做为起点,向上用线连接各个叶子的着生点,可以发现这是一条螺旋线,盘旋而上,直到上方另一片叶子的着生点恰好与起点叶的着生点重合,做为终点。
从起点叶到终点叶之间的螺旋线绕茎周数,称为叶序周。不同种植物的叶序周可能不同,之间的叶数也可能不同。例如榆,叶序周为1(即绕茎1周),有2叶;桑,叶序周为1,有3叶;桃,叶序周为2,有5叶;梨,叶序周为3,有8叶;杏,叶序周为5,有13叶;松,叶序周为8,有21叶……用公式表示(绕茎的周数为分子,叶数为分母),分别为1/2,1/3,2/5,3/8,5/13,8/21,……这些是最常见的叶序公式,据估计大约有90%植物属于这类叶序,而它们全都是由斐波纳契数组成的。
你如果观察向日葵的花盘,会发现其种子排列组成了两组相嵌在一起的螺旋线,一是顺时针方向,一组是逆时针方向。再数数这些螺旋线的数目,虽然不同品种的向日葵会有所不同,但是这两组螺旋线的数目一般是34和55、55和89或89和144,其中前一个数字是顺时针线数,后一个数字是逆时针线数,而每组数字都是斐波纳契数列中相邻的两个数。再看看菠萝、松果上的鳞片排列