低,也就决定了pam无法快速响应;pfm只能消除开关管开通时或关断时的单一损耗,开关频率较高时,开关损耗仍然较高,对开关频率仍有一定的限制。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种基于谐振软开关技术的高压直流电源,可完全消除逆变器的开关损耗和高频不可控整流电路的整流损耗,整个电源系统控制策略简单、效率高,输出的电压波动小、响应快。
本发明是通过以下技术方案实现的。本发明包括:工频不可控整流器,该整流器被配置来给逆变器稳定的输入电压;逆变器将输入的稳定直流电压转换为多种脉冲电平输出,用来对串联谐振的幅度进行调整;串联谐振电路由外加电容与变压器的漏感组成,如果变压器的漏感不足,可外加电感,将逆变器输出的脉冲电平转换为正弦波形,以便于变压器升压;高频不可控整流器对高频高压正弦电压整流,n级整流器的串联作用可使输出直流电压升高n倍。
所述的工频不可控整流器是对电网电压整流,包含的整流器数量由逆变器的输出电平数量决定。整流器以串联连接。低频变压器的次级双绕组保证各整流器中的电流、电压相位相同,相应的二极管同时导通,使得串联电容组均压充电。
所述逆变器的开关频率高,采用软开关控制以消除高频开关损耗。逆变器增加一个开关管。输入直流电压有两种。根据开关管不同的导通方式,逆变器的输出有5种状态,分别为2正向谐振、1正向谐振、自由谐振、1反向谐振和2反向谐振。逆变器输出状态概括为正向谐振、自由谐振和反向谐振。正向谐振是逆变器输出的脉冲电压方向与谐振电流方向相同。对谐振电流起到加强作用;自由谐振是逆变器输出脉冲电压为零,对谐振电流无影响;反向谐振是逆变器输出的脉冲电压方向与谐振电流方向相反。使得谐振电流减弱。同一状态,谐振电流的不同方向对应不同的开关导通方式。在谐振电流的过零点切换开关管的状态。以使得开关损耗为零,且开关频率与串联谐振频率始终保持相同。根据检测的电容电压、谐振电流和输出电压,逆变器的5种状态按照仿真得到的决策曲线决定下一时刻的输出状态。每种状态的作用周期设置为串联谐振周期一半的整数倍。
所述串联谐振电路由外加电容器和变压器的漏感串联组成,如果变压器的漏感不足,可外加电感。电容器与电感的容量确定,串联谐振频率和逆变器的开关频率也确定。电容器与电感的容量选取由逆变器的开关管的耐电压和耐电流情况和不可控整流器所要求的电容器充电速度决定。电感值与谐振电流峰值反比例,与整流器的电容器充电速度反比例,电容器电压只与谐振频率有关。
所述高频不可控整流器对高频变压器输出的高压交流电整流,输出高压直流电压。输出电压提高的倍数由高频变压器初、次级匝数比,次级绕组数量和每个次级绕组连接的整流器级数决定。变压器每个次级绕组连接多级整流器,不同次级绕组连接的整流器之间串联。次级绕组连接的多级整流器增加电容器,且连接到各级整流器的电容器容量相同,所流过的电流为零时,各整流器的相应二极管同时导通,保证各串联电容器均压充电,且无整流损耗。
高频变压器升压倍数不变的情况下,次级两个绕组的匝数和不变,即高频变压器不会因此增加容量和体积。高频变压器输出的是高压高频交流电,高频不可控整流器中的二极管须采用快速二极管。输出电压由多个电容器串联提供。每个电容器的耐压值降低了多倍,但电容器的选用仍要遵循容量小、耐压高的原则。容量小可使输出电压升压更快。
一种无超调且不影响快速性的升压方法。串联谐振电路中,电容电压与谐振电流需进行限制。以保护逆变器和高频不可